Sains Malaysiana 52(11)(2023): 3189-3209

http://doi.org/10.17576/jsm-2023-5211-13

 

Adsorption of Diclofenac from Aqueous Solution by Amine-Functionalized Poly(Acrylonitrile-Co-Acrylic Acid) Microparticles Adsorbent

(Penjerapan Diklofenak daripada Larutan Berair oleh Penjerap Mikrozarah Berfungsi Amine (Acrylonitrile-Ko-Acrylic Acid))

 

ZAKIRA AMALIN MOHAMAD1, SITI NURUL AIN MD JAMIL1,2,*, NUR NIDA SYAMIMI SUBRI1, FARHANA SYAKIRAH ISMAIL1 & RUSLI DAIK3,4

 

1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2Centre for Foundation Studies in Science of Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

3Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

4Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 28 July 2023/Accepted: 25 October 2023

 

Abstract

In this study, the synthesis of poly(acrylonitrile) (PAN) and poly(acrylonitrile-co-acrylic acid) (poly(ACN-co-AAc)) was carried out via redox polymerization, using sodium bisulphate (SBS) and potassium persulphate (KPS) as initiators. Subsequently, the resulting poly(ACN-co-AAc) was functionalized with ethanolamine (ETA) and ethylenediamine (EDA) to utilize as adsorbents for the removal of diclofenac from an aqueous solution. Both unfunctionalized and functionalized poly(ACN-co-AAc) were characterized using Fourier-Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscope (SEM), Thermogravimetric Analysis (TGA), and Brunauer-Emmett-Teller (BET) analysis. The effects of pH, initial concentration of diclofenac solution, contact time, and adsorbent dosage were investigated during the adsorption process. The isotherm data were best fitted by the Langmuir model, indicating a mono-layered adsorption mechanism. The maximum adsorption capacities obtained from the Langmuir equation were higher for ETA-functionalized poly(ACN-co-AAc) at 120.5 mg/g, as compared to EDA-functionalized poly(ACN-co-AAc) at 80.6 mg/g. The experimental kinetic results showed that the pseudo-second-order model was a good fit for describing the adsorption rate of diclofenac for both ETA-functionalized poly(ACN-co-AAc) and EDA-functionalized poly(ACN-co-AAc), with R2 values of 0.9930 and 0.9906, respectively. This suggests that the chemisorption process is more favourable for the adsorption of diclofenac when using both types of adsorbents.

 

Keywords: Diclofenac; ethanolamine-functionalized poly(ACN-co-AAc); ethylenediamine- functionalized poly(ACN-co-AAc); isotherm; kinetic; poly(acrylonitrile-co-acrylic acid)

 

Abstrak

Dalam kajian ini, sintesis poli(akrilonitril) (PAN) dan poli(akrilonitril-ko-asid akrilik) (poli(ACN-ko-AAc)) telah dijalankan melalui pempolimeran redoks dengan menggunakan natrium bisulfat (SBS) dan kalium persulfat (KPS) sebagai pemula. Kemudian, poli(ACN-ko-AAc) yang terhasil telah difungsikan dengan etanolamina (ETA) dan etilendiamina (EDA) untuk digunakan sebagai penjerap bagi penyingkiran diklofenak daripada larutan akueus. Sifat poli (ACN-ko-AAc) yang tidak difungsikan dan yang telah difungsikan telah dikaji menggunakan spektroskopi inframerah transformasi Fourier (FTIR), Mikroskop Elektron Imbasan (SEM), Analisis Termogravimetrik (TGA) dan analisis Brunauer-Emmett-Teller (BET). Semasa proses penjerapan, kami telah mengkaji kesan pH, kepekatan awal larutan diklofenak, masa sentuhan dan dos penjerap. Data isoterma paling sesuai dengan model Langmuir yang menunjukkan mekanisme penjerapan berlapis tunggal. Kapasiti penjerapan maksimum yang diperoleh daripada persamaan Langmuir lebih tinggi untuk poli(ACN-ko-AAc) yang telah difungsikan dengan ETA, iaitu 120.5 mg/g, berbanding dengan poli(ACN-ko-AAc) yang telah difungsikan dengan EDA, iaitu 80.6 mg/g. Selain itu, hasil kinetik uji kaji kami menunjukkan bahawa model pseudo-tertib-kedua berkesan untuk menggambarkan kadar penjerapan diklofenak menggunakan kedua-dua jenis penjerap, iaitu poli(ACN-ko-AAc) yang telah difungsikan dengan ETA dan EDA, dengan nilai R2 masing-masing sebanyak 0.9930 dan 0.9906. Ini menunjukkan bahawa proses kimia penjerapan lebih baik untuk penjerapan diklofenak apabila menggunakan kedua-dua jenis penjerap ini.

 

Kata kunci: Diklofenak; EDA-difungsikan poli(ACN-ko-AAc); ETA-difungsikan poli(ACN-ko-AAc); isoterma; kinetik; poli(ACN-ko-AAc)

 

REFERENCES

Adelli, G.R., Balguri, S.P., Bhagav, P., Raman, V. & Majumdar, S. 2017. Diclofenac sodium ion exchange resin complex loaded melt cast films for sustained release ocular delivery. Drug Delivery 24(1): 370-379. https://doi.org/10.1080/10717544.2016.1256000

Adeyi, A.A., Jamil, S.N.A.M., Abdullah, L.C., Choong, T.S.Y., Lau, K.L. & Abdullah, M. 2019. Simultaneous adsorption of cationic dyes from binary solutions by thiourea-modified poly(acrylonitrile-co-acrylic acid): Detailed isotherm and kinetic studies. Materials 12(18): 2903. https://doi.org/10.3390/ma12182903

AL-Kindi, G.Y., AL Ani, F.H., Al-Bidri, N.K. & Alhaidri, H.A. 2021. Diclofenac removal from wastewater by activated carbon. IOP Conference Series: Earth and Environmental Science 779(1): 012091. https://doi.org/10.1088/1755-1315/779/1/012091

Alessandretti, I., Rigueto, C.V.T., Nazari, M.T., Rosseto, M. & Dettmer, A. 2021. Removal of diclofenac from wastewater: A comprehensive review of detection, characteristics and tertiary treatment techniques. Journal of Environmental Chemical Engineering 9(6): 106743. https://doi.org/10.1016/j.jece.2021.106743

Angosto, J.M., Roca, M.J. & Fernández-López, J.A. 2020. Removal of diclofenac in wastewater using biosorption and advanced oxidation techniques: Comparative results. Water 12(12): 3567. https://doi.org/10.3390/w12123567

Aoopngan, C., Nonkumwong, J., Phumying, S., Promjantuek, W., Maensiri, S., Noisa, P., Pinitsoontorn, S., Ananta, S. & Srisombat, L. 2019. Amine-functionalized and hydroxyl-functionalized magnesium ferrite nanoparticles for congo red adsorption. ACS Applied Nano Materials 2(8): 5329-5341. https://doi.org/10.1021/acsanm.9b01305

Ayawei, N., Ebelegi, A.N. & Wankasi, D. 2017. Modelling and interpretation of adsorption isotherms. Journal of Chemistry 2017: 3039817. https://doi.org/10.1155/2017/3039817

Bonnefille, B., Gomez, E., Courant, F., Escande, A. & Fenet, H. 2018. Diclofenac in the marine environment: A review of its occurrence and effects. Marine Pollution Bulletin 131: 496-506. https://doi.org/10.1016/j.marpolbul.2018.04.053

Christian, N., Manga, N., Raoul, T. & Gabche, A. 2017. Optimisation of activated carbon preparation by chemical activation of ayous sawdust, cucurbitaceae peelings and hen egg shells using response surface methodology. International Research Journal of Pure and Applied Chemistry 14(4): 1-12. https://doi.org/10.9734/irjpac/2017/36021

Chu, Y., Khan, M.A., Xia, M., Lei, W., Wang, F. & Zhu, S. 2019. Synthesis and mechanism of adsorption capacity of modified montmorillonite with amino acids for 4-acetaminophenol removal from wastewaters. Journal of Chemical & Engineering Data 64(12): 5900-5909. https://doi.org/10.1021/acs.jced.9b00795

Cuccarese, M., Brutti, S., De Bonis, A., Teghil, R., Mancini, I.M., Masi, S. & Caniani, D. 2021. Removal of diclofenac from aqueous solutions by adsorption on thermo-plasma expanded graphite. Scientific Reports 11(1): 3427. https://doi.org/10.1038/s41598-021-83117-z

Ensano, B.M.B., de Luna, M.D.G., Rivera, K.K.P., Pingul-Ong, S.M.B. & Ong, D.C. 2019. Optimization, isotherm, and kinetic studies of diclofenac removal from aqueous solutions by Fe–Mn binary oxide adsorbents. Environmental Science and Pollution Research 26(31): 32407-32419. https://doi.org/10.1007/s11356-019-06514-y

Ghavi, F.P., Raouf, F. & Koohi, A.D. 2020. The effect of alkaline pretreatment on surfactant-modified clinoptilolite for diclofenac adsorption: Isotherm, kinetic, and thermodynamic studies. Journal of Water and Health 19(1): 47-66. https://doi.org/10.2166/wh.2020.057

Göktaş, M. 2020. Copolymer synthesis with redox polymerization and free radical polymerization systems. In Redox, edited by Khattak, R. Intechopen https://doi.org/10.5772/intechopen.88088

Gorzin, F. & Abadi, M.B.R. 2017. Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies. Adsorption Science & Technology 36(1-2): 149-169. https://doi.org/10.1177/0263617416686976

Guo, Y., Qi, P.S. & Liu, Y.Z. 2017. A review on advanced treatment of pharmaceutical wastewater. IOP Conference Series: Earth and Environmental Science 63: 012025. https://doi.org/10.1088/1755-1315/63/1/012025

Jamil, S.N.A.M., Daik, R. & Ahmad, I. 2010. Preparation and thermal behaviour of acrylonitrile (AN)/ethyl acrylate (EA) copolymer and acrylonitrile (AN)/ethyl acrylate (EA)/fumaronitrile (FN) terpolymer as precursors for carbon fibre. Pertanika J. Sci. & Technol. 18(2): 401-409. http://www.pertanika.upm.edu.my/resources/files/Pertanika%20PAPERS/JST%20Vol.%2018%20(2)% 20Jul.%202010/19%20Pg%20401-409.pdf

Jodeh, S., Abdelwahab, F., Jaradat, N., Warad, I. & Jodeh, W. 2016. Adsorption of diclofenac from aqueous solution using Cyclamen persicum tubers based activated carbon (CTAC). Journal of the Association of Arab Universities for Basic and Applied Sciences 20(1): 32-38. https://doi.org/10.1016/j.jaubas.2014.11.002

Khan, A. & Anwer, M. 2020. Advance techniques for diclofenac removal from pharmaceutical wastewater: A review. International Research Journal on Advanced Science Hub 2(Special Issue ICIES 9S): 26-31. https://doi.org/10.47392/irjash.2020.154

Kołodziejska, J. & Kołodziejczyk, M. 2018. Diclofenac in the treatment of pain in patients with rheumatic diseases. Reumatologia 56(3): 174-183. https://doi.org/10.5114/reum.2018.76816

Kurniawati, D., Bahrizal, Sari, T.K., Adella, F. & Sy, S. 2021. Effect of contact time adsorption of rhodamine B, methyl orange and methylene blue colours on langsat shell with batch methods. Journal of Physics: Conference Series 1788(1): 012008. https://doi.org/10.1088/1742-6596/1788/1/012008

Lara-Pérez, C., Leyva, E., Zermeño, B., Osorio, I., Montalvo, C. & Moctezuma, E. 2020. Photocatalytic degradation of diclofenac sodium salt: Adsorption and reaction kinetic studies. Environmental Earth Sciences 79: 277. https://doi.org/10.1007/s12665-020-09017-z

Leone, V.O., Pereira, M.C., Aquino, S.F., Oliveira, L.C.A., Correa, S., Ramalho, T.C., Gurgel, L.V.A. & Silva, A.C. 2017. Adsorption of diclofenac on a magnetic adsorbent based on maghemite: Experimental and theoretical studies. New Journal of Chemistry 42(1): 437-449. https://doi.org/10.1039/C7NJ03214E

Liang, X.X., Omer, A.M., Hu, Z., Wang, Y., Yu, D. & Ouyang, X. 2019. Efficient adsorption of diclofenac sodium from aqueous solutions using magnetic amine-functionalized chitosan. Chemosphere 217: 270-278. https://doi.org/10.1016/j.chemosphere.2018.11.023

Lonappan, L., Brar, S.K., Das, R.K., Verma, M. & Surampalli, R.Y. 2016. Diclofenac and its transformation products: Environmental occurrence and toxicity - A review. Environment International 96: 127-138. https://doi.org/10.1016/j.envint.2016.09.014

Mohammed, S.A., Kahissay, M.H. & Hailu, A.D. 2021. Pharmaceuticals wastage and pharmaceuticals waste management in public health facilities of Dessie town, North East Ethiopia. PLoS ONE 16(10): e0259160. https://doi.org/10.1371/journal.pone.0259160

Oumabady, S., Selvaraj, P.S., Periasamy, K., Veeraswamy, D., Ramesh, P.T., Palanisami, T. & Ramasamy, S.P. 2022. Kinetic and isotherm insights of Diclofenac removal by sludge derived hydrochar. Scientific Reports 12: 2184. https://doi.org/10.1038/s41598-022-05943-z

Park, O-K., Lee, S., Joh, H-I., Kim, J.K., Kang, P-H., Lee, J.H. & Ku, B-C. 2012. Effect of functional groups of carbon nanotubes on the cyclization mechanism of polyacrylonitrile (PAN). Polymer 53(11): 2168-2174. https://doi.org/10.1016/j.polymer.2012.03.031

Popa, A., Borcanescu, S., Holclajtner-Antunović, I., Bajuk-Bogdanović, D. & Uskoković-Marković, S. 2020. Preparation and characterisation of amino-functionalized pore-expanded mesoporous silica for carbon dioxide capture. Journal of Porous Materials 28(1): 143-156. https://doi.org/10.1007/s10934-020-00974-1

Qiu, Z., Sun, J., Han, D., Wei, F., Mei, Q., Wei, B., Wang, X., An, Z., Bo, X., Li, M., Xie, J. & He, M. 2020. Ozonation of diclofenac in the aqueous solution: Mechanism, kinetics and ecotoxicity assessment. Environmental Research 188: 109713. https://doi.org/10.1016/j.envres.2020.109713

Rapeia, N., Siti, N., Jamil, S.N.A.M., Abdullah, L., Mobarekeh, M., Yaw, T., Huey, S., Zahri, N.A.M. 2015. Preparation and characterization of hydrazine- modified poly(acrylonitrile-co-acrylic acid). Journal of Engineering Science and Technology Special Issue on SOMCHE 2014 & RSCE 2014 Conference, January(2015): 61-70. https://jestec.taylors.edu.my/Special%20Issue%204_SOMCHE_2014/SOMCHE%202014_4_2015_061_070.pdf

Sathishkumar, P., Arulkumar, M., Ashokkumar, V., Mohd Yusoff, A.R., Murugesan, K., Palvannan, T., Salam, Z., Ani, F.N. & Hadibarata, T. 2015. Modified phyto-waste Terminalia catappa fruit shells: A reusable adsorbent for the removal of micropollutant diclofenac. RSC Advances 5(39): 30950-30962. https://doi.org/10.1039/c4ra11786g

Shaipulizan, N.S., Md Jamil, S.N.A., Kamaruzaman, S., Subri, N.N.S., Adeyi, A.A., Abdullah, A.H. & Abdullah, L.C. 2020. Preparation of ethylene glycol dimethacrylate (EGDMA)-Based terpolymer as potential sorbents for pharmaceuticals adsorption. Polymers 12(2): 423. https://doi.org/10.3390/polym12020423

Venkatakrishnan, A. & Kuppa, V.K. 2018. Polymer adsorption on rough surfaces. Current Opinion in Chemical Engineering 19: 170-177. https://doi.org/10.1016/j.coche.2018.03.001

Yaghmaeian, K., Yousefi, N., Bagheri, A., Mahvi, A.H., Nabizadeh, R., Dehghani, M.H., Fekri, R. & Akbari-Adergani, B. 2022. Combination of advanced nano-Fenton process and sonication for destruction of diclofenac and variables optimization using response surface method. Scientific Reports 12(1): 20954. https://doi.org/10.1038/s41598-022-25349-1

Yusuff, A.S. 2019. Adsorption of hexavalent chromium from aqueous solution by Leucaena leucocephala seed pod activated carbon: Equilibrium, kinetic and thermodynamic studies. Arab Journal of Basic and Applied Sciences 26(1): 89-102. https://doi.org/10.1080/25765299.2019.1567656

Zahri, N.M., Md Jamil, S., Abdullah, L., Shean Yaw, T., Nourouzi Mobarekeh, M., Sim, J. & Mohd Rapeia, N. 2015. Improved method for preparation of amidoxime modified poly(acrylonitrile-co-acrylic acid): Characterizations and adsorption case study. Polymers 7(7): 1205-1220. https://doi.org/10.3390/polym7071205

Zhu, Y., Liang, H., Yu, R., Hu, G. & Chen, F. 2020. Removal of aquatic cadmium ions using thiourea modified poplar biochar. Water 12(4): 1117. https://doi.org/10.3390/w12041117

 

*Corresponding author; email: ctnurulain@upm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous